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Summary 

A control-volume based finite difference computation of a turbulent 

transonic flow over an axisymmetric curved hill is presented. The numerical 

method is based on the SIMPLE algorithm, and hence the conservation of mass 

equation is replaced by a pressure correction equation for compressible 

flows. The turbulence is described by a k--E turbulence model supplemented by 

a near-wall turbulence model. In the method, the dissipation rate in the 

region very close to the wall is obtained from an algebraic equation and that 

for the rest of the flow domain is obtained by solving a partial differential 

equation for the dissipation rate. The other flow equations are integrated up 

to the wall. It is shown that the present turbulence model yields the correct 

location of the compression shock. The other computational results are also 

in good agreement with experimental data. 

Work funded under Space Act Agreement C99066G. * 
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Nomenclature 

coefficient for axial velocity correction equation 

coefficient for radial velocity correction equation 

constant coefficient for f, equation (-0.025) 

constant coefficient for f, equation (-0.00001) 

constant coefficient for f, equation 

turbulence model constants for c equation, (8-1,2) 

constant coefficient for eddy viscosity equation ( -0 .09)  

wall damping function for eddy viscosity equation 

wall damping function for cw equation 

turbulent kinetic energy 

effective thermal conductivity (=b+kt> 

thermal conductivity 

turbulent thermal conductivity (=cppt/oT) 

pressure 

production rate of turbulent kinetic energy 

gas constant . 
turbulent Reynolds number (=k 2 / ( v e l ) )  

radial coordinate 

temperature 

Reynolds averaged velocity in axial direction 

friction velocity (=J(rw/p>) 

Reynolds stress 

velocity vector (-(u,v)) 

Reynolds averaged velocity in radial directions 

axial coordinate 

normal distance from the wall 
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wall coordinate (=u,y/u) 

dissipation rate 

dissipation rate of turbulent kinetic energy 

dissipation rate inside the near-wall layer 

von Karman constant (=0.41) 

molecular viscosity 

effective viscosity (=p+pt) 

turbulent viscosity 

kinematic viscosity of fluid 

turbulent eddy viscosity 

dens i ty 

turbulent Prandtl number for k-equation 

turbulent Prandtl number for energy equation 

turbulent Prandtl number for €-equation 

wall shearing stress 

dissipation function for energy equation 

current value 

incremental (or corrective) value 

non-dimensional value normalized by the free stream value 

Mathematical symbol 

c summation 
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Introduction 

The transonic flow over an axisymmetric curved hill [l] has received 

considerable attention in recent years as a bench mark test case to assess 

the capability of numerical methods as well as turbulence models to be used 

as design/analysis tools for fluid machinery. In the numerical calculation 

of turbulent transonic flows, prediction of the correct pressure field 

depends on the location of the shock and the location of the shock depends 

on the viscous force development. Therefore, emphasis was laid upon 

selecting and/or developing a suitable turbulence model in References 2 and 

3 .  The turbulence models tested in these references ranged from algebraic 

turbulence models to two-equation turbulence models, and varying degrees of 

success have been obtained. 

The transonic flow calculation presented herein constitutes one of the 

earliest applications of the newly developed numerical method [ 4 ]  as well 

as the turbulence model [ 5 ] .  These are described below. 

The control-volume method based on the SIMPLE algorithm [ 6 , 7 ]  is 

mostly used to solve incompressible flows the domain of which can be 

discretized by an orthogonal mesh. Due to their strongly convergent nature, 

pressure correction methods have been used extensively to solve complex 

turbulent flows including chemically reacting turbulent flows [ 8 - 9 1 .  The 

numerical method used herein is an extension of the pressure correction 

method to solve incompressible as well as compressible flows with 

arbitrary, complex geometries. The compressible flow equations are mostly 

solved by flux splitting methods. The Beam-Warming method [ l o ]  and the 

McCormack method [ l l ]  are representatives of the flux splitting methods. 

The flux splitting methods have originally been developed to solve the 

Euler equations and then extended to include the viscous term to solve the 
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Navier-Stokes equations. The most distinguished difference between the two 

classes of methods lies in the way the diffusion term is treated. In the 

pressure correction methods, the diffusion term is incorporated into the 

stiffness matrix while, in the flux splitting methods, the diffusion term 

is incorporated into the system of equations as the load vector term. For 

turbulent flows with extensive recirculation zones, the pressure correction 

methods may be numerically more stable than the other class of methods, 

conceptually; however, the pressure correction methods have mostly been 

used for incompressible flows and the flux splitting methods have mostly 

been used for compressible flows. Therefore, definitive advantages and 

disadvantages of these two classes of methods can not be discussed with 

confidence as yet. 

A few papers to extend the SIMPLE method to solve compressible flows 

have appeared in recent years [ 4 , 1 2 - 1 4 1 .  Some difficulties have been 

encountered in the course of these studies. A fully staggered grid layout 

was used in the original SIMPLE method to solve flow equations using 

orthogonal meshes [ 6 , 7 ] .  In many flow problems of practical importance, the 

boundary geometries are complex and arbitrary shaped blockages may exist 

inside the flow path. One difficulty was identifying a suitable grid layout 

t o  solve the Navier-Stokes equations defined on complex geometries. In 

Reference 12, a collocated grid layout was used and an artificial 

dissipation was included to prevent velocity-pressure decoupling. In 

Reference 15, a fully staggered grid layout for incompressible flows was 

used and the velocity vector was located at all grid points except at the 

pressure grid point, hence the number of degrees of freedom for velocities 

is doubled and that of pressure remains the same as in the original case. 

In References 14 and 14, the velocities were located at the same grid points 
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and the pressure was located at the centroid of the four adjacent velocity 

grid points. T h i s  g r i d  layout has been used successfully in t-he penalty 

finite element method for a long time (161. It was first used in the 

control-volume based finite difference method by Vanka et. al. [17]. They 

mentioned that it was not ea;y to obtain convergent solutions due to 

velocity-pressure decoupling. The mechanism that leads to the 

velocity-pressure decoupled solution was heuristically shown in Reference 

15. In Reference 14, the velocity-pressure decoupling was eliminated by 

using a non-conforming domain for mass imbalance calculation. In Reference 

4, the velocity-pressure decoupling was eliminated by treating the pressure 

correction equation as a standard partial differential equation rather than 

treating it as a constraint condition. In the method, the off-diagonal 

terms were moved to the load vector term and the resulting system of 

equations was solved using the tri-diagonal matrix algorithm (TDMA). Thus 

any uncertainty that may arise due to the use of a non-conforming domain 

for mass imbalance calculation does not exist in the present method [4]. 

Another difficulty was identifying the most suitable numerical 

procedure for pressure correction. The SIMPLE-R [ 6 ] ,  the SIMPLE-C [ 1 8 ] ,  and 

the standard SIMPLE algorithm [6] were used in References 1 3 ,  14, and 4, 

respectively. The pressure, velocity, and density were corrected based on 

the incremental pressure (or pressure correction) in References 13  and 14. 

In Reference 4 ,  only the pressure and velocity were corrected from the 

incremental pressure. Density was obtained from the equation of state for a 

perfect gas so that the same numerical procedure could be equally 

applicable for numerical (,omputation of chemically reacting turbulent flows 

in the future. The numerical procedure for pressure correction, especially 

for compressible flows, may need to be further studied in the future. 
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The accuracy and the convergence nature of the numerical method used 

herein has been tested by solving a class of example flow cases. The 

example problems considered in Reference 4 include: a developing channel 

flow, a developing pipe flow, a two-dimensional laminar flow in a 90 degree 

bent channel, polar cavity flows, and a turbulent supersonic flow over a 

compression ramp. It was found that the numerical method used herein 

yielded accurate computational results even when highly skewed, unequally 

spaced, curved grids were used. It is also found that the present method 

was strongly convergent for high Reynolds number flows as well as for flows 

with complex geometries. 

In numerical calculations of turbulent flows, the near-wall region has 

been incorporated into the numerical analyses usually by using the wall 

functions [ 1 9 ] ,  two- or multi-layer turbulence models [ 20 -221 ,  and low 

Reynolds number turbulence models [ 2 3 ] .  

The most widely used wall function methods have been derived from the 

logarithmic velocity profile based on the experimental observation that the 

turbulence in the near-wall region can be described in terms of the wall 

shearing stress. The wall function methods are not valid if the logarithmic 

velocity profile no longer prevails in the near-wall region. Such cases 

include separated and/or reattaching flows, unsteady flows, flows over 

surfaces with mass injection and/or suction, and near-wall low turbulent 

Reynolds number flows. 

In the two- or multi-layer turbulence models, the turbulence in the 

near-wall layer has been described by algebraic equations. In some of  these 

turbulence models [20,21], the turbulent kinetic energy and the dissipation 

rate in the near-wall layer have been constructed by piecewise continuous 

functions. As a consequence, t he  computational results may depend on the 
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location of the partition between the near-wall layer and the fully 

turbulent region. In Reference 20, a quadratic variation of the turbulent 

kinetic energy has been assumed in the near-wall region and the dissipation 

rate has been derived from the logarithmic velocity profile equation. The 

underlying assumption that the turbulent kinetic energy grows in proportion 

to the square of the distance from the wall in the near-wall region is also 

questionable, since the quadratic variation of the turbulent kinetic energy 

is valid only inside the viscous sublayer and becomes invalid as the fully 

turbulent region is approached. 

In the low Reynolds number turbulence models, the high Reynolds number 

turbulence models have been extended to include the near-wall low 

turbulence effect [ 2 3 ] .  In this class of methods, the near-wall low 

turbulence effects have been incorporated into the high Reynolds number 

turbulence models by using wall damping functions. These wall damping 

functions have been derived mostly from numerical experiments in such a way 

that the low Reynolds number turbulence models could approximately 

reproduce the experimentally observed turbulent flow phenomena in the 

near-wall region. In this class of methods, a significant number of grid 

points has to be assigned in the near wall region in order to resolve the 

stiff dissipation rate equation. 

Aside from the above two classes of methods, a new approach has been 

used in Chen and Pate1 [ 2 4 ]  to resolve the near-wall turbulence. In the 

method, only the turbulent kinetic energy equation of the k-c turbulence 

model has been extended to include the near-wall low turbulence region and 

the dissipation rate inside the near-wall layer has been prescribed 

algebraically. The dissipation rate equation has been obtained from a 

k-equation turbulence model [ 2 5 ] .  Thus the turbulent kinetic energy and the 
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dissipation rate vary smoothly from the wall toward the outside fully 

turbulent region. In this case, it would be more appropriate to classify 

this turbulence model as a partially low Reynolds number turbulence model 

to distinguish it from the other two classes of methods. Advantages of the 

partially low Reynolds number approach over the other methods can be 

summarized as follows. The turbulence in external flows and that in 

near-wall boundary layer flows have quite different length scales [ 2 6 ] .  The 

turbulence length scale of the external flows is related to the flow field 

characteristics. On the other hand, the turbulence length scale of boundary 

layer flows is strongly related to the normal distance from the wall. This 

characteristic of the wall bounded turbulent flows can be described quite 

naturally by the partially low Reynolds number turbulence models. The same 

purpose could be achieved by the low Reynolds number turbulence models as 

more experimental data become available; however, the gradient of the 

dissipation rate is the most stiff in the near-wall region, and a great 

number of grid points has to be used in this region for the low Reynolds 

number turbulence models to resolve the dissipation rate. Therefore, the 

partially low Reynolds number turbulence models seem to be more 

advantageous as compared with the low Reynolds number turbulence models, 

unless the low Reynolds number turbulence models can describe the wall 

bounded turbulent flows more accurately. 

The turbulence model used in this report belongs to the partially low 

Reynolds number turbulence models. Development of the near-wall turbulence 

model and its application to fully developed turbulent channel and pipe 

flows can be found in Reference 5. It has been shown in the reference that 
I 

the present near-wall turbulence model can resolve the over-shoot phenomena 

of the turbulent kinetic energy and the dissipation rate in the region very 
~ 
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close to the wall and that significantly improved computational results for 

the turbulence structure in the near-wall region have been obtained. More 

application of the near-wall turbulence model for complex turbulent flows 

such as the supersonic flow over a compression ramp with shock wave - 

turbulent boundary layer interaction I 2 7 1  can be found in Reference 4 .  

Reynolds Averaged Navier-Stokes Eauations and Numerical Method 

The compressible turbulent flow equations are given as; 

where 

a l a  
-(pu) + --(prv) = 0 .  
ax r ar 

a l a  a l a  aP 
- (puu) + - - ( p r ~ )  - - ( r x x )  + - -(rrXr) - - 
ax r ar ax r ar ax 

ap r e o  a i a  a l a  
-(puv) + - -((prvv) - -(rrX) + - -(rrrr) - - - - 
ax r ar ax r ar ar r 

( 3 )  

a l a  a l a  aP 

ax r ar ax ax r ar ar ax 
-(pCpuT) + --(prCpvT) = -be:] + - -[rkeE] + u- 

aP 

ar 
+ v - + a J  ( 4 )  

r X X  = 2pe- - - ( ' 7 - V ) ,  
ax 3 
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and the density is obtained from the perfect gas law given as p=pRT. A 

turbulent Prandtl number (aT) of 0.75 was used for the energy equation, see 

the Nomenclature. The molecular viscosity and the thermal conductivity were 

obtained f r o m  the Sutherland's laws given as [ 2 8 ] ;  

P T 3/2 To + S 

- P O  [<] [ T T ]  
( 5 )  

where po - 1.716 x 
and 

Kg/m-sec, To = 273.1° Kelvin, S - 110.6' Kelvin; 

k0 
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where ko - 0.0264 Kg/m-K, To = 273.1° Kelvin, and S = 194.4O Kelvin. 

In the present method, all flow variables, except pressure, have been 

located at the same grid points and the pressure node has been located at 

the centroid of the cell. The control volume for the pressure correction 

equation is defined as the cell enclosed by the four neighboring grid 

points. Note that in the control-volume based finite difference methods, 

the discrete system of equations is derived by integrating the governing 

differential equations over the control volume [ 6 ] .  For curvilinear grids, 

the required number of interpolations to obtain flow variables at the cell 

boundaries is significantly reduced by using the present grid layout. 

Enhanced convergence rate is partly attributed to the grid layout which 

required fewer interpolations [ 4 ] .  

The pressure correction equation for compressible flows is briefly 

discussed below for completeness. As in the standard pressure correction 

method, the density, the velocities, and the pressure are decomposed as;  

P - P* + P '  

u - u* i u', 

v - v* + v', 

P = P* + P' 

The incremental pressure is related to the incremental density and the 

incremental velocities as; 

p '  - p 'RT 

1 2  



aP 

ax 
U' - - A, - 

where eq. (11) has been obtained from the equation of state; and eqs. (12) 

and (13) have been obtained from the discrete u- and v-momentum equations, 

respectively [4,6]. Substituting eqs. (7-13) into (1) yields, after some 

rearrangement; 

where the last term in eq. ( 1 4 )  represents the mass imbalance. The 

incremental pressure is obtained by solving eq. (14), and the corresponding 

incremental velocities are obtained from eqs. ( 1 2 - 1 3 ) .  The flow variables 

are updated using eqs. 

computing the new current flow variables by solving eqs. 

with the turbulence equations. The iterative solution process is repeated 

until the mass imbalance in eq. (14) becomes negligible. In solving eq. 

(14), the off-diagonal terms in the discrete pressure correction equation 

were moved to the load vector term, and the resulting five diagonal system 

of equations was solved using the TDMA [4,6]. Even the slightest symptom of  

the velocity-pressure decoupling was not observed in the present flow case 

as well as for all the flow cases considered in Reference 4 .  

(8-lo), and these updated flow variables are used in 

( 2 - 4 )  together 
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Tr i rbu l  Cnce Equnt i o n s  

A k-e turbulence model supplemented with a near-wall turbulence model 

is described below. The turbulent kinetic energy equation for the entire 

flow domain is given as; 

where the production rate of turbulent kinetic energy (P,) is the same as 

the dissipation function for the energy equation (a ) .  

The dissipation rate inside the near-wall layer is given as; 

'1 
€w - - 

f c 

where 

€1 - 
"Y 

f, = 1- exp(-A,Rt) 

k2 
Rt = -  

"€1 

Cpf 3 / 2  
A, = 

2 2" 

Note that €1 in eq.(17) represents the standard dissipation rate for 
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near-wall turbulent flows in equilibrium state. The dissipation rate given 

as eq. (16) is used for eq. (15) in the near-wall region. For y=O, eq. (16) 

takes the limit value given as 2vk/y2. 

the turbulence is in the equilibrium state, f, takes the unit value and eq. 

(16) becomes identical to eq. (17). The dissipation rate given as eq. (16) 

is formally identical to the one proposed by Wolfshtein [ 2 5 ] .  The 

qualitatively similar dissipation rates used in the k-equation turbulence 

models of Gibson et. al. [ 2 9 ] ,  Hassid and Poreh (301, and Acharya and 

Reynolds [ 3 1 ]  can be written as; 

Slightly away from the wall where 

k3/2 2vk 
€w CPf3l4 f,h - + -  

KY Y2 

where f,h is a wall damping function varying from zero on the wall to unity 

in the fully turbulent region. Note that the second term on the right hand 

side of eq. 

kinetic energy equation for a limiting case as y approaches the wall. 

However, this term persists far out into the fully turbulent region, and 

hence eq. (16) has been preferred over eq ( 1 8 ) ,  see Reference 5 for more 

discussion. 

(18) can be obtained as an analytical solution of the turbulent 

The dissipation rate for the rest of the flow domain is obtained by 

solving the convection-diffusion equation for the dissipation rate equation 

given as; 

2 a i a  a Pr € 

-(pu€) + -- ( 1 9 )  
ax r ar ax r ar k k 
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The turbulence model constants used are given as: Uk=0.75, uc=1.15, 

cl=1.39, and c2-1.88. These turbulence model constants approximately 

satisfy the near-wall equilibrium turbulence condition and the decay rate 

of the grid turbulence observed in the experiment (321. Further discussion 

on the establishment of these turbulence model constants can be found in 

References 3 3 - 3 4 .  

The eddy viscosity equation inside the near-wall layer is given as; 

k2 

'1 
"t a Cpf fp- 

where fp=l-exp(AIJRt + A2Rt 2 ) . The wall damping function f, is a linear 

function of the distance from the wall in the viscous sublayer region and 

become unity in the fully turbulent region. The eddy viscosity given as eq 

(20) grows in proportion to the cubic power of the distance from the wall. 

It can be found in References 5 and 23 that the near-wall analysis yields 

the same growth rate of the eddy viscosity in the region very close to the 

wall. The eddy viscosity in the rest of the flow domain is given as; 

k2 
ut = Cpf - 

€ 

The domain for each differential equation is shown schematically in 

Figure 1 for clarity. For wall bounded turbulent flows, the equilibrium 

region extends from y+-30 up to y+-300. Thus the partition between the 

near-wall region and the fully turbulent outer region can be located 

between y+ greater than 100 and less than 300 approximately. 
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Computational Results 

The transonic flow considered in the present study i s  schematically 

shown in Figure 2. In the experiment [ 2 ] ,  an axisymmetric circular-arc bump 

of thickness 1.9 cm and a chord length of 2 0 . 3  cm was attached at 6 0  cm 

downstream of a circular cylinder with the external diameter of 15.2 cm. 

The free stream Mach number was 0.875, the Reynolds number was 13.2~10 /m, 

and the boundary layer thickness of the approaching transonic flow was 0.01  

meters. 

6 

In the following calculations, the inlet boundary was located at one 

chord length upstream of the forward corner of the bump; and the exit 

boundary, at one chord length downstream of the rear end of the bump. Some 

degree of uncertainty that may be caused by numerical diffusion and 

inadequate grid size can always exist in any numerical analysis. To reduce 

the numerical uncertainty, a relatively fine grid (78 X 5 3 )  and a highly 

fine grid (108 X 6 5 )  have been used in the present study. The computational 

results obtained using these two grids differed by no more than a few 

percent. The computational results presented herein were obtained using the 

highly fine grid shown in Figure 3 .  The inlet boundary condition f o r  the 

axial velocity and the turbulent kinetic energy were obtained from 

experimental data for a fully developed flat plate flow [35]. The 

non-dimensional velocity and the turbulent kinetic energy profiles were 

scaled to yield a boundary layer thickness of 0.01 meters at the inlet 

boundary. Uniform static pressure and uniform enthalpy were also prescribed 

at the inlet boundary. The no-slip boundary condition for velocities, a 

vanishing turbulent kinetic energy, and a constant temperature which 

corresponds to the free stream stagnation temperature were prescribed at 
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the solid wall boundary. The free stream flow condition was prescribed at 

the top boundary, and a vanishing gradient boundary condition was used for 

a l l  flow variables at the exit boundary. The partition between the 

near-wall layer and the external region was located at approximately 5 

percent of the boundary layer thickness away from the wall and 10 grid 

points were allocated inside the near-wall layer. The initial guess was 

obtained by extending the inlet boundary condition in the axial direction. 

The discrete finite difference system of equations was solved 

iteratively until the error norms became smaller than the prescribed 

convergence criteria. Each iteration consisted of 7 sweeps of the pressure 

correction equation and 3 sweeps for the rest of the flow equations in the 

axial and in the radial directions, respectively. The pressure was updated 

using an under-relaxation factor of 0.57; and the rest of the flow 

variables, using an under-relaxation factor of 0 . 4 7 .  With the use of these 

under-relaxation parameters, divergence or convergence to an erroneous 

solution has not been encountered. The convergence criteria used were; 

R 2  = !(an+' - a >/An+ll < e2, j=l,N, 
i, j i,j i 

where Nc is the number o f  pressure control volumes; the superscript n 

denotes the iteration level; the subscript i=(u, v, p, T, k, E )  denotes 

each flow variable; the subscript j denotes each grid point; N denotes the 

number of degrees of freedom for each flow variable; and Ai denotes the 

maximum magnitude of the i-th flow variable. The iteration was terminated 
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when either eq. ( 2 2 )  or eq. ( 2 3 )  was satisfied. The converged solution was 

obtained after 750 iterations for e1-5~10'~ and e 2 = l ~ l O - ~ .  At the time of 

convergence R1 and R2 were approximately 4 . 5 ~ 1 0 - ~  and 1. l ~ l O - ~ ,  

respectively. The required computational time was approximately 11 minutes 

for the CRAY-XMP at NASA/LeRC. 

The calculated iso-Mach lines are shown in Figure 4, where the 

incremental Mach number between the contour lines is 0.05. The static 

pressure contour lines are shown in Figure 5, where the pressure has been 

normalized by the inlet total pressure and the incremental pressure between 

the contour lines is 0.01. It can be seen from Figures 4 and 5 that the 

flow field is characterized by a relatively small supersonic pocket 

attached at the top of the curved hill. Neither the iso-Mach lines nor the 

pressure contour are available in References 1 - 3 ,  and direct comparison of 

these contour lines with other computational results could not be made. The 

calculated static pressure on the wall is compared with experimental data 

as well as the numerical results of References 2 and 3 in Figure 6 .  It can 

be seen in the figure that the pressure distribution on the wall obtained 

by the McCormack method using Johnson's algebraic turbulence model [ 3 ]  

(hereafter abbreviated as J - A  model) compares most favorably with 

experimental data. It is shown in the figure that the present turbulence 

model yielded significantly improved pressure distribution over the one [2] 

obtained by the McCormack method using the Wilcox-Rubesin Turbulence model 

(hereafter abbreviated as W-R model). It can also be seen in the Figure 

that the present turbulence model and the W-R model yielded a slightly more 

spread-out shock than the experimental data. In the present study, the 

computational results are compared mostly with those obtained using the W-R 

model [2] for the following reasons. Firstly, the k-6 class turbulence 
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models have wider applicability than the algebraic turbulence models, 

especially for turbulent flows through complex geometries. Secondly, the 

k-c turbulence models seldom contain a flow-dependent adjustable constant; 

however, this is not always true for algebraic turbulence models [ 3 ] .  And 

lastly, more extensive computational results for the present flow case, 

such as the flow separation and the turbulent kinetic energy profiles, were 

presented in Reference [2] than in Reference ( 3 1 .  

The streamline contour at the rear end of the hill is shown in Figure 

7. The measure flow separation zone extended from x/c=0.7 to x/c-1.1, where 

c is the chord length. The present method yielded the flow recirculation 

zone extending from x/c=O.81 to x/c=1.12. The recirculation zone obtained 

in Reference 2 using the Cebeci-Smith turbulence model and the W-R model 

extended from x/c=O.81 to x/c=l.l and from x/c=0.81 to x/c-1.2, 

respectively. It can be seen that these computational results exhibited 

decent comparison with the experimental data. 

The mean velocity profiles at four axial locations are compared with 

experimental data as well as with those of Reference 2 in Figure 8 .  It can 

be seen that both computational results exhibited fair comparison with the 

experimental data. At x/c=O.75, the present velocity profile compared more 

favorably with experimental data than that of  Reference 2. The velocity 

profiles obtained using the J-A model [ 3 ]  also compared favorably with 

experimental data. The level of agreement with experimental data was the 

same as the present one. The improvement in the calculated velocity profile 

is attributed to the turbulence models which yielded better turbulence 

fields than the W-R model. 

The calculated turbulent kinetic energy profiles are compared with 

experimental data in Figure 9. It can be seen in the figure that the 
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magnitude and location of the turbulent kinetic energy compared favorably 

with experimental data. Again, the present turbulence model yielded 

significantly improved computational result at x/c-0.75. It has been shown 

in Reference 5 that the near-wall turbulence model can resolve details of 

the near-wall turbulence including the over-shoot phenomena of the 

turbulent kinetic energy and the dissipation rate in the region very close 

to the wall. Considering this fact, it is not fortuitous that the near-wall 

turbulence model yielded improved turbulent kinetic energy profile at 

x/c=o. 75. 

The Reynolds stress profiles at the same axial locations are shown in 

Figure 10. It can be seen that the present turbulence model under predicted 

the magnitude of the Reynolds stress. The Reynolds stress profiles 

presented in Reference 3 also exhibited the same trend as the present 

results. It has long been arp.ued that the algebraic turbulence models and 

the k-c turbulence models can not resolve recirculating turbulent flows 

accurately. The same argument can be applied to the present computational 

results. However, the flow field in the downstream region of the curved 

hill did not affect the upstream region significantly and the correct 

surface pressure distribution and the shock location were obtained in the 

numerical calculations. 

Conclusions 

A control-volume based finite difference computation of a turbulent 

transonic flow using a k-c turbulence model supplemented with a near-wall 

turbulence model has been presented. It has been shown that the present 

method was strongly convergent for the high Reynolds number flow with 

arbitrary geometry and that the method yields significantly accurate 
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computational results for the transonic flow with the shock wave -turbulent 

boundary layer interaction. The strongly convergent nature is attributed to 

the near-wall turbulence model, the pressure-staggered grid layout, and the 

pressure correction method. The improved computational results are 

attributed to the near-wall turbulence model. 

In the near-wall turbulence model, the turbulent kinetic energy 

equation was integrated up to the wall and the dissipation rate inside the 

near-wall region was obtained from an algebraic equation. This approach was 

found to be more advantageous than the low Reynolds number turbulence 

models since the stiff dissipation rate equation in the near-wall region 

need not be solved numerically. In some numerical calculations of turbulent 

flows, algebraic turbulence models have been preferred over k - e  turbulence 

models to overcome the numerical difficulty originating from the stiff 

dissipation rate equation [ 3 , 3 6 , 3 7 ] .  This difficulty is considerably 

reduced by using the partially low Reynolds number turbulence models. More 

importantly, the near-wall turbulence model yielded significantly accurate 

computational results for the near-wall turbulence field of the shock wave 

- turbulent boundary layer interaction flow. For the separated flow region 

at the rear end of the hill, the present turbulence model as well as the 

J - A  model yielded degenerated computational results. The degenerated 

computational results are attributed to the limited capability of the 

algebraic turbulence model and the k-c turbulence model to resolve 

recirculating turbulent flows [ 8 , 3 5 ] .  However, the usefulness of the 

present turbulence model to solve turbulent flows with a small separated 

flow region has been demonstrated in this study. 
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FIGURE 2. - TRANSONIC FLOW OVER AN AXISYMMETRIC CURVED H I L L ,  

26 



FIGURE 3. - DISCRETIZATION OF THE FLOW M W I N  (108 X 65 IESH).  

FIGURE 4. - [SO-MACH LINES. 

FIGURE 5. - PRESSURE CONTOUR. 
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